
Cache-Aside Approach For Cloud Design Pattern

Narendra Babu Pamula1, K Jairam2, B Rajesh3

1,2 ASSISTANT PROFESSOR,DEPT OF CSE ,

V.KR.,V.N.B & A.G.K COLLEGE OF ENGINNERING,
GUDIVADA,KRISHNA(D.T),ANDHRA PRADESH, INDIA-521301

3, ASSISTANT PROFESSOR,DEPT OF IT,

VASIREDDY VENKATADRI INSTITUTE OF TECHNOLGY,
NAMBUR,GUNTUR(D.T),ANDHRA PRADESH, INDIA

Abstract: In this paper is represented by showing how each
piece can fit into the big picture of cloud application
architectures. It also discusses the benefits and considerations
for some patterns like Cache-aside pattern, Circuit breaker
pattern, Command and query responsibility segregation
pattern and Health endpoint monitoring pattern. Most of the
features of Windows Azure. However the majority of topics
described in this guide are equally relevant to all kinds of
distributed systems, whether hosted on Windows Azure or on
other cloud platforms.

Keywords: Windows Azure caching, Cache-aside pattern,
Evicting Data, Co-Located Topology, Dedicated Topology.

1 INTRODUCTION
In computer networking, cloud computing is a phrase used
to describe a variety of computing concepts that involve a
large number of computers connected through a
communication network such as an Internet. It is very
similar to the concept of utility computing. In science,
cloud computing is a synonym for distributed
computing over a network, and means the ability to run a
program or application on many connected computers at
the same time. The phrase is often used in reference to
network-based services, which appear to be provided by
real server hardware, and are in fact served up by virtual
hardware, simulated by software running on one or more
real machines. Such virtual servers do not physically exist
and can therefore be moved around and scaled up or down
on the fly without affecting the end user, somewhat like a
cloud becoming larger or smaller without being a physical
object. A design pattern in architecture and computer -
science is a formal way of documenting a solution to a
design problem in a particular field of expertise. An
organized collection of design patterns that relate to a
particular field is called a language. The elements of this
language are entities called patterns. Each pattern describes
a problem that occurs over and over again in our
environment, which describes the core of the solution to
that problem, in such a way that you can use this solution a
million times over, without ever doing it the same way
twice. The following design patterns are useful in cloud-
hosted applications. Each pattern is provided in a common
format that describes the context and problem, the solution,
issues and considerations for applying the pattern, and an
example based on Windows Azure. Each pattern also
includes links to other related patterns.

2 RELATED WORK
2.1 Windows Azure Caching
 Windows Azure Caching is an in-memory, distributed
caching feature designed for Windows
Azure application. Caching is available as a part of the
Windows Azure SDK.Windows Azure Caching allows a
cloud service to host Caching on a Windows Azure
role.[1] The cache is distributed across all running instances
of that role. Therefore, the amount of available memory in
the cache is determined by the number of running instances
of the role that hosts Caching and the amount of physical
memory reserved for Caching on each instance.
There are two deployment topologies for Caching:
 Dedicated
 Co-located
2.1.1 Dedicated Topology
In the dedicated topology, you define a worker role that is
dedicated to Caching. This means that all of the worker
role's available memory is used for the Caching and
operating overhead. The following diagram shows Caching
in a dedicated topology. The cloud service shown has three
roles: Web1, Worker1, and Cache1. There are two running
instances of each role. In this example, the cache is
distributed across all instances of the dedicated Cache1
role.

Fig 1: Dedicated Topology

A dedicated topology has the advantage of scaling the
caching tier independently of any other role in the cloud
service. For the best Caching performance, a dedicated
topology is recommended because the role instances do not
share their resources with other application code and
services.

Narendra Babu Pamula et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1423-1426

www.ijcsit.com 1423

2.1.2 Co-Located Topology
In a co-located topology, you use a percentage of available
memory on existing web or worker roles for Caching. The
following diagram shows Caching in a co-located topology.
The cloud service has two roles: Web1 and Worker1. There
are two running instances of each role. In this example, the
cache is distributed across all instances of the Web1 role.
Because this role also hosts the web front-end for the cloud
service, the cache is configured to use only a percentage of
the physical memory on each instance of the Web1 role.

Fig 2: Co-located topology

A co-located cache is a cost-effective way to make use of
existing memory on a role within a cloud service. Cloud
computing presents a number of management challenges.
Companies using public clouds do not have ownership of
the equipment hosting the cloud environment, and because
the environment is not contained within their own
networks, public cloud customers do not have full visibility
or control Users of public cloud services must also
integrate with an architecture defined by the cloud
provider, using its specific parameters for working with
cloud components. Integration includes tying into the cloud
APIs for configuring IP addresses, subnets, firewalls and
data service functions for storage. Because control of these
functions is based on the cloud provider’s infrastructure
and services, public cloud users must integrate with the
cloud infrastructure management. Capacity management is
a challenge for both public and private cloud environments
because end users have the ability to deploy applications
using self-service portals. Applications of all sizes may
appear in the environment, consume an unpredictable
amount of resources, then disappear at any time.
Chargeback or, pricing resource use on a granular basis is a
challenge for both public and private cloud environments.
Chargeback is a challenge for public cloud service
providers because they must price their services
competitively while still creating profit Users of public
cloud services may find chargeback challenging because it
is difficult for IT groups to assess actual resource costs on a
granular basis due to overlapping resources within an
organization that may be paid for by an individual business
unit, such as electrical power. For private cloud operators,
chargeback is fairly straightforward, but the challenge lies
in guessing how to allocate resources as closely as possible
to actual resource usage to achieve the greatest operational

efficiency. Exceeding budgets can be a risk. Hybrid cloud
environments, which combine public and private cloud
services, sometimes with traditional infrastructure
elements, present their own set of management challenges.
These include security concerns if sensitive data lands on
public cloud servers, budget concerns around overuse of
storage or bandwidth and proliferation of mismanaged
images. Managing the information flow in a hybrid cloud
environment is also a significant challenge. On-premises
clouds must share information with applications hosted off-
premises by public cloud providers and this information
may change constantly. Hybrid cloud environments also
typically include a complex mix of policies, permissions
and limits that must be managed consistently across both
public and private clouds.

3. CACHE-ASIDE PATTERN
Load data on demand into a cache from a data store. This
pattern can improve performance and also helps to maintain
consistency between data held in the cache and the data in
the underlying data store. Applications use a cache to
optimize repeated access to information held in a data store.
However, it is usually impractical to expect that cached
data will always be completely consistent with the data in
the data store. Applications should implement a strategy
that helps to ensure that the data in the cache is up to date
as far as possible, but can also detect and handle situations
that arise when the data in the cache has become stale.
Many commercial caching systems provide read-through
and write-through/write-behind operations. In these
systems, an application retrieves data by referencing the
cache. If the data is not in the cache, it is transparently
retrieved from the data store and added to the cache. Any
modifications to data held in the cache are automatically
written back to the data store as well. For caches that do not
provide this functionality, it is the responsibility of the
applications that use the cache to maintain the data in the
cache. An application can emulate the functionality of read-
through caching by implementing the cache-aside strategy.
This strategy effectively loads data into the cache on
demand. Figure 3 summarizes the steps in this process.

Figure 3: Using the Cache-Aside pattern to store data in

the cache

Narendra Babu Pamula et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1423-1426

www.ijcsit.com 1424

If an application updates information, it can emulate the
write-through strategy as follows:
1. Make the modification to the data store
2. Invalidate the corresponding item in the cache.
When the item is next required, using the cache-aside
strategy will cause the updated data to be retrieved from the
data store and added back into the cache.

3.1 Implementation
Consider the following points when deciding how to
implement this pattern:
3.1.1 Lifetime of Cached Data.
Many caches implement an expiration policy that causes
data to be invalidated and removed from the cache if it is
not accessed for a specified period. For cache-aside to be
effective, ensure that the expiration policy matches the
pattern of access for applications that use the data. Do not
make the expiration period too short because this can cause
applications to continually retrieve data from the data store
and add it to the cache. Similarly, do not make the
expiration period so long that the cached data is likely to
become stale. Remember that caching is most effective for
relatively static data, or data that is read frequently.

Figure 4: Life time of Cache comparison

3.1.2 Evicting Data.
Most caches have only a limited size compared to the data
store from where the data originates, and they will evict
data if necessary. Most caches adopt a least-recently-used
policy for selecting items to evict, but this may be
customizable. Configure the global expiration property and
other properties of the cache, and the expiration property of
each cached item, to help ensure that the cache is cost
effective. It may not always be appropriate to apply a
global eviction policy to every item in the cache. For
example, if a cached item is very expensive to retrieve from
the data store, it may be beneficial to retain this item in
cache at the expense of more frequently accessed but less
costly items.

Figure 5: Eviction data

3.1.3 Priming the cache.
Many solutions prepopulate the cache with the data that an
application is likely to need as part of the startup
processing. The Cache-Aside pattern may still be useful if
some of this data expires or is evicted. Implementing the
Cache-Aside pattern does not guarantee consistency
between the data store and the cache. An item in the data
store may be changed at any time by an external process,
and this change might not be reflected in the cache until the
next time the item is loaded into the cache. In a system that
replicates data across data stores, this problem may become
especially acute if synchronization occurs very frequently.

Figure 6: Priming the cache

3.1.4 Local (in-memory) caching.
A cache could be local to an application instance and stored
in-memory. Cache-aside can be useful in this environment
if an application repeatedly accesses the same data.
However, a local cache is private and so different
application instances could each have a copy of the same
cached data. This data could quickly become inconsistent
between caches, so it may be necessary to expire data held
in a private cache and refresh it more frequently. In these
scenarios it may be appropriate to investigate the use of a
shared or a distributed caching mechanism.

Narendra Babu Pamula et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1423-1426

www.ijcsit.com 1425

4. APPLICATION
 A cache does not provide native read-through and

write-through operations.
 Resource demand is unpredictable. This pattern

enables applications to load data on demand. It makes
no assumptions about which data an application will
require in advance.

5. FUTURE WORK

When the cached data set is static. If the data will fit into
the available cache space, prime the cache with the data on
startup and apply a policy that prevents the data from
expiring. For caching session state information in a web
application hosted in a web farm. In this environment, you
should avoid introducing dependencies based on client-
server affinity. Most applications will include diagnostics
features that generate custom monitoring and debugging
information, especially when an error occurs. This is
referred to as instrumentation, and is usually implemented
by adding event and error handling code to the application.
The process of gathering remote information that is
collected by instrumentation is usually referred to as
telemetry.

6. CONCLUSION
In Windows Azure you can use Windows Azure Cache to
create a distributed cache that can be shared by multiple
instances of an application.
The GetMyEntityAsync method in the following code
example shows an implementation of the Cache-aside
pattern based on Windows Azure Cache. This method
retrieves an object from the cache using the read-though
approach. An object is identified by using an integer ID as
the key. The GetMyEntityAsync method generates a string
value based on this key (the Windows Azure Cache API
uses strings for key values) and attempts to retrieve an item
with this key from the cache. If a matching item is found, it

is returned. If there is no match in the cache, the
GetMyEntityAsync method retrieves the object from a data
store, adds it to the cache, and then returns it (the code that
actually retrieves the data from the data store has been
omitted because it is data store dependent). Note that the
cached item is configured to expire in order to prevent it
from becoming stale if it is updated elsewhere.

REFERENCES
1. MSDN Library. Microsoft. Retrieved 12 February 2013.
2. "Capacity Planning Considerations for Windows Azure

Caching". MSDN Library. Microsoft. Retrieved 13 February 2013.
3. "Windows Azure Caching on Dedicated Roles". MSDN Library.

Microsoft. Retrieved 13 February 2013.
4. "Windows Azure Caching on Existing Roles". MSDN Library.

Microsoft. Retrieved 13 February 2013.
5. "About Windows Azure Caching, Cache Cluster". MSDN Library.

Microsoft. Retrieved 13 February 2013.
6. "How to Use Windows Azure Caching". Windows Azure Website.

Microsoft. Retrieved 13 February 2013.
7. "Windows Azure Caching Role Configuration Settings

(ServiceConfiguration.cscfg)". MSDN Library. Microsoft. Retrieved
13 February 2013.

8. "About Windows Azure Caching, Named Caches". MSDN Library.
Microsoft. Retrieved 13 February 2013.

9. "Getting Started with Development for Windows Azure Caching,
Configure the Clients". MSDN Library. Microsoft. Retrieved 13
February 2013.

10. "Windows Azure Caching Client Configuration Settings
(Web.config), dataCacheClients". MSDN Library. Microsoft.
Retrieved 13 February 2013.

11. "About Windows Azure Shared Caching". MSDN Library.
Microsoft. Retrieved 13 February 2013.

12. "Understanding Quotas for Windows Azure Shared
Caching". MSDN Library. Microsoft. Retrieved 13 February 2013.

13. "Windows Azure Shared Caching FAQ". MSDN Library.
Microsoft. Retrieved 13 February 2013.

14. "Differences between Caching On-Premises and in the
Cloud". MSDN Library. Microsoft. Retrieved 13 February 2013.

15. "Introducing the Windows Azure Caching Service". MSDN
Magazine. Microsoft. Retrieved 13 February 2013.

16. "Windows Azure Caching Release Notes (October 2012)". MSDN
Library. Microsoft. Retrieved 13 February 2013.

Narendra Babu Pamula et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1423-1426

www.ijcsit.com 1426

